Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.230
Filtrar
1.
Cancer Med ; 13(7): e7166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572926

RESUMO

BACKGROUND: Studies have shown that some single nucleotide polymorphisms (SNPs) could serve as excellent markers in foretelling the treatment outcome of interferon (IFN) in myeloproliferative neoplasms (MPN). However, most work originated from western countries, and data from different ethnic populations have been lacking. METHODS: To gain insights, targeted sequencing was performed to detect myeloid-associated mutations and SNPs in eight loci across three genes (IFNL4, IFN-γ, and inosine triphosphate pyrophosphatase [ITPA]) to explore their predictive roles in our cohort of 21 ropeginterferon alpha-2b (ROPEG)-treated MPN patients, among whom real-time quantitative PCR was also performed periodically to monitor the JAK2V617F allele burden in 19 JAK2V617F-mutated cases. RESULTS: ELN response criteria were adopted to designate patients as good responders if they achieved complete hematological responses (CHR) within 1 year (CHR1) or attained major molecular responses (MMR), which occurred in 70% and 45% of the patients, respectively. IFNL4 and IFN-γ gene SNPs were infrequent in our population and were thus excluded from further analysis. Two ITPA SNPs rs6051702 A>C and rs1127354 C>A were associated with an inferior CHR1 rate and MMR rate, respectively. The former seemed to be linked to grade 2 or worse hepatotoxicity as well, although the comparison was of borderline significance only (50%, vs. 6.7% in those with common haplotype, p = 0.053). Twelve patients harbored 19 additional somatic mutations in 12 genes, but the trajectory of these mutations varied considerably and was not predictive of any response. CONCLUSIONS: Overall, this study provided valuable information on the ethnics- and genetics-based algorithm in the treatment of MPN.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Resultado do Tratamento , Haplótipos , Células Germinativas , Interferon lambda , Interleucinas/genética
2.
Blood Cancer J ; 14(1): 72, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658558

RESUMO

NRAS and KRAS activating point mutations are present in 10-30% of myeloid malignancies and are often associated with a proliferative phenotype. RAS mutations harbor allele-specific structural and biochemical properties depending on the hotspot mutation, contributing to variable biological consequences. Given their subclonal nature in most myeloid malignancies, their clonal architecture, and patterns of cooperativity with other driver genetic alterations may potentially have a direct, causal influence on the prognosis and treatment of myeloid malignancies. RAS mutations overall tend to be associated with poor clinical outcome in both chronic and acute myeloid malignancies. Several recent prognostic scoring systems have incorporated RAS mutational status. While RAS mutations do not always act as independent prognostic factors, they significantly influence disease progression and survival. However, their clinical significance depends on the type of mutation, disease context, and treatment administered. Recent evidence also indicates that RAS mutations drive resistance to targeted therapies, particularly FLT3, IDH1/2, or JAK2 inhibitors, as well as the venetoclax-azacitidine combination. The investigation of novel therapeutic strategies and combinations that target multiple axes within the RAS pathway, encompassing both upstream and downstream components, is an active field of research. The success of direct RAS inhibitors in patients with solid tumors has brought renewed optimism that this progress will be translated to patients with hematologic malignancies. In this review, we highlight key insights on RAS mutations across myeloid malignancies from the past decade, including their prevalence and distribution, cooperative genetic events, clonal architecture and dynamics, prognostic implications, and therapeutic targeting.


Assuntos
Mutação , Humanos , Prognóstico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Transtornos Mieloproliferativos/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Sci Rep ; 14(1): 9389, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654055

RESUMO

BCR::ABL1-negative myeloproliferative neoplasms are hematopoietic disorders characterized by panmyelosis. JAK2 V617F is a frequent variant in these diseases and often occurs in the 46/1 haplotype. The G allele of rs10974944 has been shown to be associated with this variant, specifically its acquisition, correlations with familial cases, and laboratory alterations. This study evaluated the association between the 46/1 haplotype and JAK2 V617F in patients with myeloproliferative neoplasms in a population from the Brazilian Amazon. Clinical, laboratory and molecular sequencing analyses were considered. Carriers of the G allele of rs10974944 with polycythemia vera showed an increase in mean corpuscular volume and mean corpuscular hemoglobin, while in those with essential thrombocythemia, there was an elevation in red blood cells, hematocrit, and hemoglobin. Associations were observed between rs10974944 and the JAK2 V617F, in which the G allele (OR 3.4; p < 0.0001) and GG genotype (OR 4.9; p = 0.0016) were associated with JAK2 V617F + and an increase in variant allele frequency (GG: OR 15.8; p = < 0.0001; G: OR 6.0; p = 0.0002). These results suggest an association between rs10974944 (G) and a status for JAK2 V617F, JAK2 V617F + _VAF ≥ 50%, and laboratory alterations in the erythroid lineage.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Polimorfismo de Nucleotídeo Único , Humanos , Brasil , Feminino , Masculino , Janus Quinase 2/genética , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Idoso , Adulto , Frequência do Gene , Alelos , Haplótipos , Policitemia Vera/genética , Policitemia Vera/sangue , Genótipo , Predisposição Genética para Doença , Idoso de 80 Anos ou mais
4.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509561

RESUMO

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Assuntos
Cálcio , Transtornos Mieloproliferativos , Humanos , Fura-2 , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transdução de Sinais , Mutação , Receptores da Eritropoetina/genética , Janus Quinase 2/genética
5.
Cancer Med ; 13(5): e7093, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497538

RESUMO

BACKGROUND: The occurrence of somatic mutations in patients with no evidence of hematological disorders is called clonal hematopoiesis (CH). CH, whose subtypes include CH of indeterminate potential and clonal cytopenia of undetermined significance, has been associated with both hematologic cancers and systemic comorbidities. However, CH's effect on patients, especially those with concomitant malignancies, is not fully understood. METHODS: We performed a retrospective evaluation of all patients with CH at a tertiary cancer center. Patient characteristics, mutational data, and outcomes were collected and analyzed. RESULTS: Of 78 individuals included, 59 (76%) had a history of cancer and 60 (77%) had moderate to severe comorbidity burdens. DNMT3A, TET2, TP53, and ASXL1 were the most common mutations. For the entire cohort, the 2-year overall survival rate was 79% (95% CI: 70, 90), while the median survival was not reached. Of 20 observed deaths, most were related to primary malignancies (n = 7, 35%), comorbidities (n = 4, 20%), or myeloid neoplasms (n = 4, 20%). Twelve patients (15%) experienced transformation to a myeloid neoplasm. According to the clonal hematopoiesis risk score, the 3-year transformation rate was 0% in low-risk, 15% in intermediate-risk (p = 0.098), and 28% in high-risk (p = 0.05) patients. By multivariate analysis, transformation was associated with variant allele frequency ≥0.2 and hemoglobin <10 g/dL. CONCLUSIONS: In a population including mostly cancer patients, CH was associated with comorbidities and myeloid transformation in patients with higher mutational burdens and anemia. Nevertheless, such patients were less likely to die of their myeloid neoplasm than of primary malignancy or comorbidities.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Hematopoiese Clonal , Estudos Retrospectivos , Hematopoese/genética , Neoplasias/epidemiologia , Neoplasias/genética , Transtornos Mieloproliferativos/epidemiologia , Transtornos Mieloproliferativos/genética , Comorbidade
6.
Br J Haematol ; 204(4): 1325-1334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462984

RESUMO

We report on a study of next-generation sequencing in 257 patients undergoing investigations for cytopenias. We sequenced bone marrow aspirates using a target enrichment panel comprising 82 genes and used T cells from paired blood as a control. One hundred and sixty patients had idiopathic cytopenias, 81 had myeloid malignancies and 16 had lymphoid malignancies or other diagnoses. Forty-seven of the 160 patients with idiopathic cytopenias had evidence of somatic pathogenic variants consistent with clonal cytopenias. Only 39 genes of the 82 tested were mutated in the 241 patients with either idiopathic cytopenias or myeloid neoplasms. We confirm that T cells can be used as a control to distinguish between germline and somatic variants. The use of paired analysis with a T-cell control significantly reduced the time molecular scientists spent reporting compared to unpaired analysis. We identified somatic variants of uncertain significance (VUS) in a higher proportion (24%) of patients with myeloid malignancies or clonal cytopenias compared to less than 2% of patients with non-clonal cytopenias. This suggests that somatic VUS are indicators of a clonal process. Lastly, we show that blood depleted of lymphocytes can be used in place of bone marrow as a source of material for sequencing.


Assuntos
60427 , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Síndromes Mielodisplásicas/genética , Mutação , Linfócitos T/patologia , Transtornos Mieloproliferativos/genética
7.
Best Pract Res Clin Haematol ; 37(1): 101537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490765

RESUMO

Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Predisposição Genética para Doença , Penetrância , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Células Germinativas , Mutação em Linhagem Germinativa , Peptídeos e Proteínas de Sinalização Intracelular
8.
Clin Adv Hematol Oncol ; 22(2): 80-89, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446475

RESUMO

The treatment landscape for BCR/ABL-negative myeloproliferative neoplasms (MPNs), driven by JAK2, CALR, and MPL mutations, has evolved significantly over the last decade. Recent regulatory approvals in polycythemia vera (PV) include the JAK inhibitor ruxolitinib, and more recently, a novel recombinant interferon alfa-2 (IFN-α) therapeutic agent. Many clinical trials have documented the safety and efficacy of IFN-α therapy in PV and essential thrombocythemia, the classical BCR/ABL-negative MPNs. Used off-label for more than 30 years as a cytoreductive agent, IFN-α therapy promotes significant clinical, hematologic, and molecular responses. In some IFN-α-treated patients, partial or complete reduction of the mutant JAK2 allele burden may lead to a durable measurable residual disease state, owing to the ability of long-term IFN-α therapy to selectively deplete mutant JAK2-harboring hematopoietic stem cells. Pegylated IFN-α forms were developed to improve the drug stability and tolerability of first-generation IFN-α therapeutics. More recently, a novel pegylated IFN-α, ropeginterferon alfa-2b, received approval for PV by the European Medicines Agency and the US Food and Drug Administration in 2019 and 2021, respectively. This article reviews the clinical research and recent advances that led to the first regulatory approval of IFN-α in a BCR/ABL-negative MPN and its future promise as a disease-modifying therapeutic agent.


Assuntos
Transtornos Mieloproliferativos , Estados Unidos , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Interferon-alfa/uso terapêutico , Imunoterapia , Neoplasia Residual , Polietilenoglicóis/uso terapêutico
11.
J Mol Diagn ; 26(5): 399-412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367765

RESUMO

Myeloid neoplasms are clonal disorders that arise via acquisition of genetic mutations leading to excessive proliferation and defective differentiation. Mutational profiling is vital as it has implications for diagnosis, prognosis, and therapeutic decision-making. Next-generation sequencing (NGS) has become a mainstay in the evaluation of myeloid malignancies, as it enables efficient characterization of multiple genetic changes. Herein, the analytical validation of the 37-gene Archer VariantPlex Core Myeloid panel is reported, using 58 DNA specimens with 87 single-nucleotide variants and 23 insertions/deletions. The panel achieved good depth of coverage, 100% analytical sensitivity and specificity for single-nucleotide variants and insertions/deletions ≤21 bp, and 100% reproducibility, with a reportable limit of detection determined as 5%. The Archer NGS panel can accurately and reproducibly detect variants of clinical significance in myeloid neoplasms. A retrospective analysis of 535 clinical specimens tested with the Archer NGS panel showed a frequency and pattern of mutations across myeloid malignancies that were similar to other published studies. A review of the diagnostic classification of patients with acute myeloid leukemia and myelodysplastic syndrome using the World Health Organization 2017/2022 and International Consensus Classification 2022 guidelines, in addition to European LeukemiaNet 2017/2022 risk stratification of patients with acute myeloid leukemia, was also performed to assess the utility of the molecular information provided by the Archer NGS panel.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Mutação , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos
12.
Exp Hematol ; 132: 104178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340948

RESUMO

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Eritropoese/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transdução de Sinais , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
13.
Histopathology ; 84(7): 1224-1237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422618

RESUMO

AIMS: Liquid biopsy (LBx)-based next-generation sequencing (NGS) of circulating tumour DNA (ctDNA) can facilitate molecular profiling of haematopoietic neoplasms (HNs), particularly when tissue-based NGS is infeasible. METHODS AND RESULTS: We studied HN LBx samples tested with FoundationOne Liquid CDx, FoundationOne Liquid, or FoundationACT between July 2016 and March 2022. We identified 271 samples: 89 non-Hodgkin lymphoma (NHL), 43 plasma-cell neoplasm (PCN), 41 histiocytoses, 27 myelodysplastic syndrome (MDS), 25 diffuse large B-cell lymphoma (DLBCL), 22 myeloproliferative neoplasm (MPN), 14 Hodgkin lymphoma (HL), and 10 acute myeloid leukaemia (AML). Among 73.4% with detectable pathogenic alterations, median maximum somatic allele frequency (MSAF) was 16.6%, with AML (36.2%), MDS (19.7%), and MPN (44.5%) having higher MSAFs than DLBCL (3.9%), NHL (8.4%), HL (1.5%), PCN (2.8%), and histiocytoses (1.8%) (P = 0.001). LBx detected characteristic alterations across HNs, including in TP53, KRAS, MYD88, and BTK in NHLs; TP53, KRAS, NRAS, and BRAF in PCNs; IGH in DLBCL; TP53, ATM, and PDCD1LG2 in HL; BRAF and MAP2K1 in histiocytoses; TP53, SF3B1, DNMT3A, TET2, and ASXL1 in MDS; JAK2 in MPNs; and FLT3, IDH2, and NPM1 in AML. Among 24 samples, the positive percent agreement by LBx was 75.7% for variants present in paired buffy coat, marrow, or tissues. Also, 75.0% of pairs exhibited alterations only present on LBx. These were predominantly subclonal (clonal fraction of 3.8%), reflecting the analytical sensitivity of LBx. CONCLUSION: These data demonstrate that LBx can detect relevant genomic alterations across HNs, including at low clonal fractions, suggesting a potential clinical utility for identifying residual or emerging therapy-resistant clones that may be undetectable in site-specific tissue biopsies.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/análise , Biomarcadores Tumorais/genética , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Adulto , Mutação , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/diagnóstico , Nucleofosmina , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/sangue
15.
Leukemia ; 38(3): 570-578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321107

RESUMO

Myeloproliferative neoplasms (MPNs) are a group of chronic hematologic malignancies that lead to morbidity and early mortality due to thrombotic complications and progression to acute leukemia. Clinical and mutational risk factors have been demonstrated to predict outcomes in patients with MPNs and are used commonly to guide therapeutic decisions, including allogenic stem cell transplant, in myelofibrosis. Adolescents and young adults (AYA, age ≤45 years) comprise less than 10% of all MPN patients and have unique clinical and therapeutic considerations. The prevalence and clinical impact of somatic mutations implicated in myeloid disease has not been extensively examined in this population. We conducted a retrospective review of patients evaluated at eight Canadian centers for MPN patients diagnosed at ≤45 years of age. In total, 609 patients were included in the study, with median overall survival of 36.8 years. Diagnosis of prefibrotic or overt PMF is associated with the lowest OS and highest risk of AP/BP transformation. Thrombotic complications (24%), including splanchnic circulation thrombosis (9%), were frequent in the cohort. Mutations in addition to those in JAK2/MPL/CALR are uncommon in the initial disease phase in our AYA population (12%); but our data indicate they may be predictive of transformation to post-ET/PV myelofibrosis.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Trombose , Humanos , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Mielofibrose Primária/genética , Mielofibrose Primária/terapia , Policitemia Vera/genética , Trombocitemia Essencial/genética , Canadá/epidemiologia , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Trombose/genética , Janus Quinase 2/genética , Mutação , Calreticulina/genética
16.
Bull Math Biol ; 86(3): 32, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363386

RESUMO

In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Mutação
17.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338802

RESUMO

Myeloproliferative neoplasms (MPNs) are the leading causes of unusual site thrombosis, affecting nearly 40% of individuals with conditions like Budd-Chiari syndrome or portal vein thrombosis. Diagnosing MPNs in these cases is challenging because common indicators, such as spleen enlargement and elevated blood cell counts, can be obscured by portal hypertension or bleeding issues. Recent advancements in diagnostic tools have enhanced the accuracy of MPN diagnosis and classification. While bone marrow biopsies remain significant diagnostic criteria, molecular markers now play a pivotal role in both diagnosis and prognosis assessment. Hence, it is essential to initiate the diagnostic process for splanchnic vein thrombosis with a JAK2 V617F mutation screening, but a comprehensive approach is necessary. A multidisciplinary strategy is vital to accurately determine the specific subtype of MPNs, recommend additional tests, and propose the most effective treatment plan. Establishing specialized care pathways for patients with splanchnic vein thrombosis and underlying MPNs is crucial to tailor management approaches that reduce the risk of hematological outcomes and hepatic complications.


Assuntos
Síndrome de Budd-Chiari , Transtornos Mieloproliferativos , Neoplasias , Trombose , Trombose Venosa , Humanos , Veia Porta , Neoplasias/patologia , Trombose Venosa/genética , Trombose Venosa/complicações , Síndrome de Budd-Chiari/complicações , Síndrome de Budd-Chiari/genética , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Trombose/patologia , Mutação , Janus Quinase 2/genética
18.
Sci Rep ; 14(1): 2810, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308077

RESUMO

Myeloproliferative neoplasms (MPNs) encompass a diverse group of hematologic disorders driven by mutations in JAK2, CALR, or MPL. The prevailing working model explaining how these driver mutations induce different disease phenotypes is based on the decisive influence of the cellular microenvironment and the acquisition of additional mutations. Here, we report increased levels of chromatin segregation errors in hematopoietic cells stably expressing CALRdel52 or JAK2V617F mutations. Our investigations employing murine 32DMPL and human erythroleukemic TF-1MPL cells demonstrate a link between CALRdel52 or JAK2V617F expression and a compromised spindle assembly checkpoint (SAC), a phenomenon contributing to error-prone mitosis. This defective SAC is associated with imbalances in the recruitment of SAC factors to mitotic kinetochores upon CALRdel52 or JAK2V617F expression. We show that JAK2 mutant CD34 + MPN patient-derived cells exhibit reduced expression of the master mitotic regulators PLK1, aurora kinase B, and PP2A catalytic subunit. Furthermore, the expression profile of mitotic regulators in CD34 + patient-derived cells allows to faithfully distinguish patients from healthy controls, as well as to differentiate primary and secondary myelofibrosis from essential thrombocythemia and polycythemia vera. Altogether, our data suggest alterations in mitotic regulation as a potential driver in the pathogenesis in MPN.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Animais , Humanos , Camundongos , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Microambiente Tumoral
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 190-196, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387920

RESUMO

OBJECTIVE: To analyze the mutant spectrum of clonal hematopoiesis of indeterminate potential (CHIP) related mutations and clinical characteristics and to explore the correlation and the possible mechanism between CHIP-related mutations and cardio-cerebrovasculars events (CCEs) in patients with myeloproliferative neoplasms (MPNs). METHODS: The clinical data and next-generation sequencing results of 73 MPN patients in Beijing Anzhen Hospital from August 2019 to July 2022 were retrospectively analyzed. Statistical analyses were conducted by multivariate logistic regression for the effects of CHIP-related mutations and inflammatory cytokines on CCEs for MPNs patients. RESULTS: Fifty-five cases of MPN (75.3%) showed positive in CHIP-related genes. There was no significant difference in variant allele frequency of CHIP-related gene between essential thrombocythemia (ET) and polycythemia vera (PV). CHIP-related gene mutations were mainly single gene mutations, with mutation rate from high to low as JAK2V617F (63.0%, 46/73), ASXL1 (16.4%, 12/73), TET2 (11.0%, 8/73), DNMT3A (9.6%, 7/73), SRSF2 (6.9%, 5/73), SF3B1 (4.1%, 3/73), TP53(1.4%, 1/73) and PPM1D (1.4%, 1/73). The mutation rate of CHIP-related genes in MPN patients >60 years old was significantly higher than that in the patients ≤60 years old ï¼»91.7%(33/36) vs 59.5%(22/37)ï¼½. CCEs occurred in 27 MPNs patients (37.0%, MPNs/CCEs), and 5 had recurrent CCEs, all of which were arterial events. Age (62.8±12.8 years vs 53.9±15.8 years, P =0.015), IL-1ß level (17.7±26.0 vs 4.3±8.6, P =0.012), IL-8 level (360.7±598.6 vs 108.3±317.0, P =0.045), the proportion of the patients with thrombosis history (29.6% vs 2.2%, P =0.020), and the detection rate of CHIP-related mutations (88.9% vs 67.4%, P =0.040) in the group with CCEs were higher than those in the group without CCEs. Multivariate Logistic regression analysis showed that age(OR =0.917, 95%CI :0.843-0.999, P =0.047), thrombosis history (OR =34.148, 95%CI :2.392-487.535, P =0.009), any CHIP-related mutations(OR =16.065, 95%CI :1.217-212.024, P =0.035), and elevated level of IL-1ß (OR =0.929, 95%CI :0.870-0.992, P =0.027) were independent risk factors for MPNs/CCEs. CHIP-related gene mutations were not associated with CCEs in MPN patients, but DNMT3A (OR =88.717, 95%CI :2.690-292.482, P =0.012) and ASXL1 (OR =7.941, 95%CI :1.045-60.353, P =0.045) were independent risk factors for CCEs in PV. CONCLUSION: There is a higher mutation rate of CHIP-related genes in MPN patients, especially those over 60 years old. Older age, thrombosis history, CHIP-related mutations and IL-1ß elevated levels are independent risk factors for CCEs in MPN. DNMT3A and ASXL1 mutations are independent risk factors for CCEs in PV patients. CHIP-related gene mutations and inflammatory cytokine IL-1 ß elevated levels may be the novel risk factors for CCEs in MPN.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Trombose , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Hematopoiese Clonal , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Mutação
20.
Blood Cancer J ; 14(1): 1, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177095

RESUMO

Classical myeloproliferative neoplasms (MPNs) are characterized by the proliferation of myeloid cells and the risk of transformation into myelofibrosis or acute myeloid leukemia (AML) and TP53 mutations in MPN patients are linked to AML. However, JAK2V617F has been reported to impact the TP53 response to DNA damage, suggesting potential overlapping role of TP53 inactivation in MPN. We established a mouse model showing that JAK2V617F/Vav-Cre/Trp53-/- mice displayed a similar phenotype to JAK2V617F/Vav-Cre mice, but their proliferation was outcompeted in competitive grafts. RNA-Seq revealed that half of the genes affected by JAK2V617F were affected by p53-inactivation, including the interferon pathway. To validate this finding, mice were repopulated with a mixture of wild-type and JAK2V617F (or JAK2V617F/Vav-Cre/Trp53-/-) cells and treated with pegylated interferonα. JAK2V617F-reconstituted mice entered complete hematological remission, while JAK2V617F/Vav-Cre /Trp53-/--reconstituted mice did not, confirming that p53 loss induced interferon-α resistance. KEGG and Gene Ontology analyses of common deregulated genes showed that these genes were mainly implicated in cytokine response, proliferation, and leukemia evolution, illustrating that in this mouse model, the development of MPN is not affected by TP53 inactivation. Taken together, our results show that many genetic modifications induced by JAK2V617F are influenced by TP53, the MPN phenotype may not be. Trp53 loss alone is insufficient to induce rapid leukemic transformation in steady-state hematopoiesis in JAK2V617F MPN, and Trp53 loss may contribute to interferon resistance in MPN.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Mutação , Interferon-alfa/farmacologia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...